
~ porosity; k, root of the characteristic equation; ~0, gas viscosity; v, dimensionless frequency; ~, dimen- 
sionless coordinate; p, volume particle concentration; co, frequency; 7, ~, a, parameters introduced into (18). 
Indices: 0, undisturbed state of the bed; ', pulsations of hydrodynamic quantities and differentiation of c~ with 
respect to p ; *, state under the gas-distrib.uting grid. 
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METHOD OF INTERPOLATING DATA IN DETERMINING 

THE RHEOLOGICAL PARAMETERS OF A LIQUID 

A.  B.  G o l o v a n c h i k o v  a n d  N. V. T y a b i n  UDC 541.148:66.011 

The least-squares method is applied to determine the parameters in the rheologieal equation of 
state for the liquid over wide ranges in the velocity gradient and tangential stress. 

The theological parameters of liquids have major effects on the hydromechanical, thermal, and mass- 
transfer processes [i], and therefore correct determination of the theological equation of state for a liquid is 
a basic problem in rheology [2, 3]. 

The ranges in strain rate and stress for a given object frequently constitute 4-6 orders of magnitude, so 
mathematical description of experimental values usually involves piecewise approximation for individual ranges in 
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the input and output parameters  by means of a c lass ical  l eas t - squares  method [4, 5]. This complicates cal-  
culations related to the logical selection of an equation in relation to the range in the tangential s t r e s s  or  
velocity gradient. There are  major  difficulties in describing the entire ranges in the input and output p a r a -  
meters  by means of a single rheological equation of state. We can demonst ra te  this on the determinat ion of the 
rheological equation of state for glycerol ,  which is one of the s implest  Newtonian liquids. 

T = ~7. 

Table 1 gives results from the capillary viscometry of glycerol at t = 60~ 

The tangential stresses and velocity gradient were determined as functions of the pressure gradient and 

the corresponding flow rate from the following formulas [3]: 

Ap 32q 
~w= ~ -  de; ~'w = ~d~c �9 

The v iscometry  results  were backed up by process ing the dwell- t ime distribution via the following equa- 
tions [6]: 

dcCi t3 C itd q tdt ; 
td td 

t 

"~=Apdc~!iC4I d : )  
i t 

t d 

The upper part of Table 1 shows that the results from the classical least-squares method for the entire 

ranges of input and output quantities at 60~ are such that glycerol behaves as a viscoplastic liquid with a limit- 
ing shear stress | = 0.055 N/m 2. 

The coefficients in the rheological equation of state obtained by this method 

(~. I0 a) = 55 + 104.9+ 

were examined on Student's t - tes t ,  which demonstrated significance for both coefficient [71. This conclusion 
that glycerol  is a viscoplastic liquid conflicts with the evidence that it is a Newtonian liquid. Also, there  are  
impermiss ib ly  large relative deviations between the theoret ical  and experimental  values for the tangential 
s t r e s ses  at low velocity gradients,  which indicates ei ther  an e r r o r  in  the experiment or  that the entire range 
of the input and output pa ramete r s  cannot be fitted to a single equation by least  squares .  

In our view, this occurs  because the cr i ter ion for minimizing the sum of the squares of the deviation in 
the leas t - squares  method 

S~ = ~ [(b + axi) -- g,]Z} rain (1) 
i ~ l  

gives good results when the experimental data relate to narrow ranges in the input and output parameters. 

If the ranges in the input and output parameters are wide, the least-squares approximation gives an 

unsatisfactory result because the theoretical and observed values of the function come together in absolute 

magnitude in the region of their largest numerical values at one end of the range of measurement, where (i) 

shows that one obtains the least squares of the deviations. On the other hand, at the other end of the range 
of the measurements, namely at small numerical values for the function [where the deviations in absolute 

magnitude are small and make the least contribution to the sum in (i)], the relative deviations between the 

theoretical and experimental values may be hundreds or thousands of percent (Table i). 

Therefore, to approximate the data over wide ranges in the parameters it is desirable for condition (i) 
to be replaced by a condition in which one minimizes the sum of the relative squares of the deviations: 
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TABLE I. Experimental Data and Theoretical Results on the Depen- 

dence of Tangential Stress on Velocity Gradient 

T. lOa 

~r. lOa 

T 10 3 

8 

o,1~ 
56 
5500 

1,013 

1,3 

0,1 
12 

65,5 
440 

10,024 
--I6 

2 
180 

265 
47 

200,25 
I1 

10 
900 

1105 

22,7 

1001,2 
11 

I00 
11000 

10555 
--4,5 

10012 

- -9  

I000 Experimental 
105000 values 

105056 LSF 

0,5 S~=0,2563I. 106 

S~ ~0,30452 �9 104 

~100120 RLSF 
--4,5 8~=0,248. iO s 

S~ =0,6278. lO- 1 

(2) 

The normal equations here are 

1 - - b  , - - a  '1 = 0  
i=i i =1  ' = i y? ) 

(3) 

a n d  

, : ,  (7) ,=,  

from which we have formulas for a and b: 

i = I  i ~ 1  " ~  " 
a ~ 

: ,  T ,.,) 

i=1 \ g [  ! 

= ! (4) 
�9 

b = i = 1  

The lower part of Table 1 gives results from (4) for the tabulated values of the tangential stress in rela- 

tion to velocity gradient, while the approximating theological equation of state is 

(~. I0 a) = -- 0.0119 -~ 100,127, 

where e = 1.19.10 -5 N/m 2 and is not significant on Student's t-test. 

The final rheological equation of state for glycerol at 60~ is 

T ~ O , 1 7 ,  

which corresponds to the results of [8]. 

In a similar way one can determine the equations of state and the numerical values of the parameters 

for an extensive class of non-Newtonian liquids with the experimental data approximated over wide ranges in 

the tangential stresses and velocity gradient. 

NOTATION 

a, b, parameters of linear regression equation; C, stay period distribution function; d, diameter, m; n, 

number of experiments; l, length, m ; i, experiment number; q, volume flow rate, ma/sec; t, time, sec; S~, 
S~, sums of squares of absolute and relative deviations; x, y, argument and function; ~, velocity gradient, 
sec-1; A, measured difference; E, relative deviation, % ; | limiting shear stress, N/m2; ~, viscosity, nsec/r~2; 
E, sum; r, shearing stress, N/m 2. Indices: d, delay; i, indicator; c, Capillary; o, end; w, wall. 
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FLOW RETARDATION DURING DEFORMATION 

IN VARIOUS MODES 

A. N. Prokunin and V. D. Sevruk UDC 532.5:532.135 

Retardation of the flow of a polymer fluid during elongation in various modes is analyzed on the 
basis of theory and experiments. 

It has been discovered in ea r l i e r  studies [1, 2] that a polymer  fluid (polyethylene melt) under tension 
with a constant deformation rate  • can exhibit two ranges of deformation as a solid almost  (with essent ial ly  
elastic s trains developing). The usually observed f i rs t  range is found during the beginning of the deformation 
process  and extends over periods shor te r  than the relaxation time. The second loss of fluidity can already 
occur  after the flow has developed. The tension force F(t), varying in t ime,  was found to pass through two 
maxima. Both ranges of suppressed flow corresponded to an increase  of force F. As the deformation rate 
was increased,  both ranges eventually merged into one. An appraisal  of the r ecur r ing  flow based on the s e -  
cond increasing of the force suggests that this proper ty  is charac te r i s t ic  of polymers  which crys ta l l ize  (poly- 
ethylene) as well as of those which do not (polystyrene). 

After the recur r ing  solidification there ei ther  again develops a flow (low-density polyethylene at 125~ 
or occurs  a rupture of the elongated specimen (high-density polyethylene at 130~ Thorough data on rupture 
of monodisperse polymer fluids can be found in another report [3], where it has been attributed to a loss of 
fluidity. It remains unclear, however, whether or not solidification had recurred in that study [3]. 

The loss of fluidity is, it seems, manifested differently in different polymer fluids. Thus, e.g., no 
loss of fluidity (no range of constant irreversible strain) was found in grade P-20 polyisobutylene elongated 
at 44~ within the same range of strain and strain rates as polyethylene had been earlier [I]. Here the force 
F(t), varying in time, passed through only one maximum and continued to decrease monotonically. 

It is to be noted that polyisobutylene at 44~ and low-density polyethylene at 125~ have approximately 
the san~e viscosity, ~ ~ 3.105 Pa. sec and modulus of high-elasticity G e ~ 103 Pa. Their flow curves within 
the given range of shearing strain rates (~t < 1 sec -l) also do not differ much. 

According to another study [4], a polymer fluid in the range of nonlinear deformation often cannot be 
described by the viscosities and the relaxation times alone. Describing the loss of fluidity requires still an- 
other parameter fl* (0 _< ~ <_ i), which characterizes the aptitude of the material for strain orientation. The 
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